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Critical dynamics of self-organizing Eulerian walkers
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The model of self-organizing Eulerian walkers is numerically investigated on the square lattice. The critical
exponents for the distribution of a number of stepg (@nd visited sites £;) characterizing the process of
transformation from one recurrent configuration to another are calculated using the finite-size scaling analysis.
Two different kinds of dynamical rules are considered. The results of simulations show that both versions of
the model belong to the same class of universality with the critical exponenrtss=1.75+0.1.
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To understand the nature and physical origins of the selfef recurrent configurations of a Markov process because the
organized criticalit SOQ [1], a number of different models motion of a succeeding particle depends only on the final
have been suggested in the past few years. Typically, thesmnfiguration of arrows produced by its predecessor. Each
models evolve according to the prescribed dynamical ruleglement of this recurrent set can be obtained from the previ-
into the SOC state, where they show spatiotemporal selfeus one by adding a particle followed by its movement and
similarity and are characterized by long-range correlationsieaving the lattice. It turns out that for any recurrent configu-
In the critical state, the systems pass from one stable conation, the graplG is a spanning tree on the lattice. Thus the
figuration to another through the avalanches that play an eswet of recurrent configurations is in a one-to-one correspon-
sential role in the organization of the dynamical criticality. gence with spanning tre¢g].

In this paper, we numerically investigate critical dynam.ics At each intermediate step, the moving particle can destroy
OI] a ceIIl|JIa£ a%c‘).matog rmdel recently propo?ed by P”?ﬁé spanning tree and form a loop of arrows. At this moment
tzh evetl;elk.[ ] AI\SLi) n?.o € aj ?f’me %oérgg&r; %ajfur%s tW't the system leaves the recurrent set. Eventually, after a finite

1€ well-known Abelian sancdplie mo [. 4], bu number of steps the particle reconstructs the structure of a
differs in rules that govern the motion of particles on the ; : .
spanning tree. The interval between the destruction and res-

lattice. toration of the spanning tree can be calledaasalanche of
The model of the self-organizing Eulerian walkers on the P 9

square lattice is defined as follows. We associate with eacﬁyC“C'ty' purmg the walk of the parﬂcle,l the system passes
sitei of the two-dimensional. X L lattice an arrow directed several times from one recurrent configuration to another
up, right, down, or left with respect th We start with an through the avalanche_s of cyclicity. _Th|s process is similar to
arbitrary initial configuration of arrows on the lattice. Ini- the avalanche dynamics of sand in the ASM, where ava-
tially, we drop a particle on the randomly chosen it&he lanches also reconstruct the recur_rent configurations, which
succeeding steps the particle performs are determined by ti§&n also be re_'prgsented by spanning tfdés o

following rules: (i) the particle coming to a sitp turns the At the beginning of an avalanche of cyclicity the last
arrow clockwise by the right angldii) then makes a step turned arrow closes a loop. Then, the trajectory of the par-
along the new direction of the arrow to the neighbor site, andicle covers the interior of the loop. During this walk each
(i) if the new direction points out the lattice, the particle inner arrow turns four times, whereas the arrows forming the
leaves the system. These rules are applied until the particleop turn in such a way that the direction of the loop gets
eventually leaves the lattice. Then, we go on by adding aeversed. It might occur that a moving particle, after escap-
new particle and so on. In this type of dynamics, the moveing from one closed loop, may form a new loop. Due to this
ment of the particle affects the medium and in turn is af-structure of the walk, the number of steps in an avalanche is
fected by the medium. equal tok(4n+1), wherek is the number of loops consti-

On the lattice with closed boundary conditions, the par-tuting the avalanche ami=0,1, . .. . It is possible to prove
ticle never leaves the system and finally gets into a limitthat the avalanche may consist of only one or two loops. This
cycle in which it passes each bond in both directions onlyfact explains the line doubling in the distribution of the steps
once. Walks of this type are known as Euler circ(ii in the avalanche of cyclicityFig. 1).

Let us consider the lattice with open boundary conditions. To investigate the avalanche process in the models of
The set of bonds marked by arrows form a gr&hAdding  self-organizing Eulerian walkers, we studied them numeri-
the particles followed by their movement through the latticecally with high statistics. For each distribution of avalanches
changes the configuration of arrows and organizes the sysve considered up to 3010° events on the square lattices of
tem into the SOC stat2]. This critical state is a collection linear sizeL from 120 to 400. Simulations always started

from the regular initial configuration in which all arrows

were directed up.
*On leave of absence from Theoretical Department, Yerevan In Fig. 2 we present the double logarithmic plot of the
Physics Institute, 375036 Yerevan, Armenia. distribution P(s) of the number of visited sites in the ava-
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FIG. 3. Integrated distributionB (s) for the eight lattice sizes

FIG. 1. DistributionP(l) of the number of steps in avalanches
() P with L ranging from 120 to 400.

on the square lattice of linear site=400.

lanche for the lattice size =400. The analysis of the data for the critical exponentsre=pgs/vs+1 gives the value

shows that this distribution obeys the power law 7s=1.75£0.05. , ) L
In the same way, we investigated the distributi®fl) of
P(s)~s s (1)  the number of steps performed by the particle in the ava-

lanche for the different lattice sizds. There is an explicit

To estimate the critical exponents, we have performed &ower-law behavior in these distributiofisig. 1)
finite-size scaling analysis,7], assuming that the distribu-
tion functions scale with the lattice siteas P()~1~7, (4)

P(x,L)=L"FH(x/L"), (2 with a finite-size cutoff. We applied the finite-size scaling
. . . . analysis to the integrated distributions and obtained
wheref(y) is a universal scaling function ang and v are 7,=1.7+0.05 from the best data collapse.
critical exponents that describe the scaling of the distribution ' We also investigated a slightly modified model. The dif-
function. . ) erence from the previous one is in the order of turns of the
To reduce the fluctuations of the data, we integrated each..o\v In the case when the turns form the sequence up-
distribution over exponentially increasing bin lengths. Fordown-.left-right-up we found a similar power law for ava-

the integrated bin distribution we ha{®8] lanche distributions.
To find the critical exponents of this power law from
D(S):f P(x)dx~s (s~ 1), (3) finite-size scaling analysis, we integrated again these distri-
butions over exponentially increasing bin lengths. The criti-

) s _ . . cal exponentsn=1.72+0.05 andr,=1.8+0.05 have been
Plotting D(s,L)L"s versussL™"s on a double logarithmic  gpained from the best data collapse for the distribution of
scale, as is shown in Fig. 3 for the different lattice si£es  gteps and visited sites, respectively.
we obtained that the best data collapse corresponds 10 |, conclusion, we numerically investigated the model of
Bs=1.5+0.05, »s=2.0+0.05 (Fig. 4). The scaling relation  se|f-organizing Eulerian walkers on the square lattice. The
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FIG. 2. DistributionP(s) of the number of visited sites in ava- FIG. 4. Finite-size scaling for the integrated distributions

lanches on the square lattice of linear size 400. D(s).
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dynamics of the model organizes the medium of the systemame class of universality and have a surprisingly large
and builds up spatiotemporal complexity. We obtained exvalue, 1.75 0.1, in comparison to the known exponent for
plicit power-law distributions in two slightly different ver- the ASM (r=>5/4) [9].

sions of the model. We calculated the critical exponents for

the distribution of a number of visited sitesf and number We would like to thank V. B. Priezzhev for valuable
of steps () in avalanches of cyclicity. These exponents arediscussions and a critical reading of the manuscript. R.R.S
equal within a small uncertainty. We argue that the criticalwas partially supported by International Soros Science Edu-
exponents for these models within small errors belong to theational Program.
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