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Critical dynamics of self-organizing Eulerian walkers

R. R. Shcherbakov,* Vl. V. Papoyan, and A. M. Povolotsky
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia

~Received 13 August 1996!

The model of self-organizing Eulerian walkers is numerically investigated on the square lattice. The critical
exponents for the distribution of a number of steps (t l) and visited sites (ts) characterizing the process of
transformation from one recurrent configuration to another are calculated using the finite-size scaling analysis.
Two different kinds of dynamical rules are considered. The results of simulations show that both versions of
the model belong to the same class of universality with the critical exponentst l5ts51.7560.1.
@S1063-651X~97!09201-5#

PACS number~s!: 05.70.Ln, 05.40.1j, 02.70.2c
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To understand the nature and physical origins of the s
organized criticality~SOC! @1#, a number of different models
have been suggested in the past few years. Typically, th
models evolve according to the prescribed dynamical ru
into the SOC state, where they show spatiotemporal s
similarity and are characterized by long-range correlatio
In the critical state, the systems pass from one stable c
figuration to another through the avalanches that play an
sential role in the organization of the dynamical criticality

In this paper, we numerically investigate critical dynam
of a cellular automaton model recently proposed by Pri
zhevet al. @2#. This model has some common features w
the well-known Abelian sandpile model~ASM! @3,4#, but
differs in rules that govern the motion of particles on t
lattice.

The model of the self-organizing Eulerian walkers on t
square lattice is defined as follows. We associate with e
site i of the two-dimensionalL3L lattice an arrow directed
up, right, down, or left with respect toi . We start with an
arbitrary initial configuration of arrows on the lattice. In
tially, we drop a particle on the randomly chosen sitei . The
succeeding steps the particle performs are determined by
following rules: ~i! the particle coming to a sitej turns the
arrow clockwise by the right angle,~ii ! then makes a step
along the new direction of the arrow to the neighbor site, a
~iii ! if the new direction points out the lattice, the partic
leaves the system. These rules are applied until the par
eventually leaves the lattice. Then, we go on by addin
new particle and so on. In this type of dynamics, the mo
ment of the particle affects the medium and in turn is
fected by the medium.

On the lattice with closed boundary conditions, the p
ticle never leaves the system and finally gets into a li
cycle in which it passes each bond in both directions o
once. Walks of this type are known as Euler circuits@5#.

Let us consider the lattice with open boundary conditio
The set of bonds marked by arrows form a graphG. Adding
the particles followed by their movement through the latt
changes the configuration of arrows and organizes the
tem into the SOC state@2#. This critical state is a collection

*On leave of absence from Theoretical Department, Yere
Physics Institute, 375036 Yerevan, Armenia.
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of recurrent configurations of a Markov process because
motion of a succeeding particle depends only on the fi
configuration of arrows produced by its predecessor. E
element of this recurrent set can be obtained from the pr
ous one by adding a particle followed by its movement a
leaving the lattice. It turns out that for any recurrent config
ration, the graphG is a spanning tree on the lattice. Thus t
set of recurrent configurations is in a one-to-one corresp
dence with spanning trees@2#.

At each intermediate step, the moving particle can dest
a spanning tree and form a loop of arrows. At this mom
the system leaves the recurrent set. Eventually, after a fi
number of steps the particle reconstructs the structure
spanning tree. The interval between the destruction and
toration of the spanning tree can be called anavalanche of
cyclicity. During the walk of the particle, the system pass
several times from one recurrent configuration to anot
through the avalanches of cyclicity. This process is simila
the avalanche dynamics of sand in the ASM, where a
lanches also reconstruct the recurrent configurations, wh
can also be represented by spanning trees@4#.

At the beginning of an avalanche of cyclicity the la
turned arrow closes a loop. Then, the trajectory of the p
ticle covers the interior of the loop. During this walk eac
inner arrow turns four times, whereas the arrows forming
loop turn in such a way that the direction of the loop ge
reversed. It might occur that a moving particle, after esc
ing from one closed loop, may form a new loop. Due to th
structure of the walk, the number of steps in an avalanch
equal tok(4n11), wherek is the number of loops consti
tuting the avalanche andn50,1, . . . . It is possible to prove
that the avalanche may consist of only one or two loops. T
fact explains the line doubling in the distribution of the ste
in the avalanche of cyclicity~Fig. 1!.

To investigate the avalanche process in the models
self-organizing Eulerian walkers, we studied them nume
cally with high statistics. For each distribution of avalanch
we considered up to 303106 events on the square lattices
linear sizeL from 120 to 400. Simulations always starte
from the regular initial configuration in which all arrow
were directed up.

In Fig. 2 we present the double logarithmic plot of th
distributionP(s) of the number of visited sites in the ava
n
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lanche for the lattice sizeL5400. The analysis of the dat
shows that this distribution obeys the power law

P~s!;s2ts. ~1!

To estimate the critical exponents, we have performe
finite-size scaling analysis@6,7#, assuming that the distribu
tion functions scale with the lattice sizeL as

P~x,L !5L2b f ~x/Ln!, ~2!

where f (y) is a universal scaling function andb andn are
critical exponents that describe the scaling of the distribut
function.

To reduce the fluctuations of the data, we integrated e
distribution over exponentially increasing bin lengths. F
the integrated bin distribution we have@8#

D~s!5E P~x!dx;s2~ts21!. ~3!

PlottingD(s,L)Lbs versussL2ns on a double logarithmic
scale, as is shown in Fig. 3 for the different lattice sizesL,
we obtained that the best data collapse correspond
bs51.560.05, ns52.060.05 ~Fig. 4!. The scaling relation

FIG. 1. DistributionP( l ) of the number of steps in avalanche
on the square lattice of linear sizeL5400.

FIG. 2. DistributionP(s) of the number of visited sites in ava
lanches on the square lattice of linear sizeL5400.
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for the critical exponentsts5bs /ns11 gives the value
ts51.7560.05.

In the same way, we investigated the distributionP( l ) of
the number of steps performed by the particle in the a
lanche for the different lattice sizesL. There is an explicit
power-law behavior in these distributions~Fig. 1!

P~ l !; l2t l, ~4!

with a finite-size cutoff. We applied the finite-size scalin
analysis to the integrated distributions and obtain
t l51.760.05 from the best data collapse.

We also investigated a slightly modified model. The d
ference from the previous one is in the order of turns of
arrow. In the case when the turns form the sequence
down-left-right-up, we found a similar power law for ava
lanche distributions.

To find the critical exponents of this power law from
finite-size scaling analysis, we integrated again these di
butions over exponentially increasing bin lengths. The cr
cal exponentst l51.7260.05 andts51.860.05 have been
obtained from the best data collapse for the distribution
steps and visited sites, respectively.

In conclusion, we numerically investigated the model
self-organizing Eulerian walkers on the square lattice. T

FIG. 3. Integrated distributionsD(s) for the eight lattice sizes
with L ranging from 120 to 400.

FIG. 4. Finite-size scaling for the integrated distributio
D(s).
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dynamics of the model organizes the medium of the sys
and builds up spatiotemporal complexity. We obtained
plicit power-law distributions in two slightly different ver
sions of the model. We calculated the critical exponents
the distribution of a number of visited sites (ts) and number
of steps (t l) in avalanches of cyclicity. These exponents a
equal within a small uncertainty. We argue that the criti
exponents for these models within small errors belong to
y,
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same class of universality and have a surprisingly la
value, 1.7560.1, in comparison to the known exponent f
the ASM (t55/4) @9#.
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discussions and a critical reading of the manuscript. R.
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